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Introduction

I
I
|
I
]

The advantages of LISP for fast oproduction of 1large software ;

- systems, especially those involving Artificial Intelligence

applications, are too well known for us to expound on here. Suffice it
to say that systems such as DENDRAL, MACSYMA, SOPHIE, SCHOLAR, LUNAR,

etc., could not have evolved and could not have been developed within

L the time and level of effort they actually reauired to complete, had it

- not been for the existence of a sophisticated LISP programming

environment, of which perhaps INTERLISP is the best known.

But as all users of these systems know, the blessings of such
sophisticated programmina environments are not without some serious

counteronarts. Althouah proarammina (debuagina, editing, ...) and H

runnino finished products written in INTERLISP proceed at a surprisingly

fast clip when the total load on the machine 1is 1low, dearadation of

performance increases rapidly - and seemingly non-linearly - to
intolerable levels as soon as larae numbers of users increase the

demands imposed on the computer ‘s resources.

An indication of how bad thinas can be is provided by the following

tynical example. 1In a busy mornina, a simole INTERLISP editina command

that uses under 300 milliseconds of CPU time takes almost an order of
magnitude more elapsed time than would be expected from the average load

on the machine. Thus, extremely slow responsiveness in the face of
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small computational demands is one of the serious problems that we shall

investigate.

Another asprect of this performance deqradation manifests itself in
the behavior of CPU bound jobs, such as compiling. In spite of the
TENEX pie-slice scheduler ‘s quaranteed fraction of CPU power, compute
bound INTERLISP 1jobs rarely aet more than 50% of their guaranteed CPU
power when, again, the load imposed on the machine by other wusers

increases bevond certain limits.

The above cited typical situations provide the motivation and the
framework for the work to be described. Our obijective was to pin down
what aspects of the "INTERLISP cum TENEX" environment were responsible
for the observed objectionable behavior, and to propose and implement
remedies to improve the situation. More specifically, our goals were to
improve system responsiveness for short interactions (e.g. editing) and
to increase system efficiency and throuaghput when executing CPU bound

jobs.

To this end we verformed an extensive series of measurements
coverina a variety of aspects of svster bchavior. wWe obtained
statistics of usage of INTERLISP from different users doina different
things; we traced the way INTERLISP uses core, hoth in the space and the
time dimensions; and we identified with hiagh resolution the areas where
most instruction executions take place, i.r. where and doina what the

system spends most of its time.

Whoever has tried to understand with precision the behavior of a
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complex system immersed in a time-sharing system knows how difficult it
is to actually measure what one wants, and how hard it is to interpret
the data one finally obtains. For this reason, we shall endeavor to
describe faithfully the methods and procedures used to obtain our data,
the <conditions under which it was obtained, and our reasons for
assertina that it means what we believe it does. Our aim is not only to
describe our work and justify our results, but also to make the data and
the methodology used to obtain it available to others that may find it

useful for their own purposes.

Before embarking in this voyaqge, however, let us advance here our
main conclusions for the benefit of readers not wishing to wade through
the rest of the paper.

1) the lack of responsiveness (disproportionately 1long elapsed

times for relatively modest comoutational demands, or waitina 20

seconds when 3 seconds should have been enough) is due to both the

larae workina set needed by INTERLISP and the particular way the

TENEX operatina syvstem allows the core-memory allocated to a

process to arow to the process’ workina set size. In order for any

sianificant amount of useful computation to take place in

INTERLISP, it is necessarv to have from 6@ to 180 pages in core;

with less than that, program execution 1is interrupted by page

faults at intervals of a millisecond or less. Since TENEX does not
do any preloading, and forces a process to grow its working set by
paade faultina itself up from paade 1, it takes roughly 10 seconds

{at 1f@ milliseconds wait time for latency, page management

routines, and rescheduling delays) to build up an INTERLISP working
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set. At this point (or even sooner) however, since page fault
interrupts are considered part of the process’ chargeable CPU time,
the process would have exceeded its cuantum allocation on the high
priority interactive aqueue, and descend to a lower priority
scheduling aueue. If by the time the second startup of the process
occurs (on the lower priority aueue), the process is still in the
balance set (i.e. has most of its pages in core) some meaningful
computation can then begin to take place. If not, the same vainful

page by page reloading process takes place again.

The remedies to this situation are direct:
a) reduce the size of INTERLISP s working set
b) modify TENEX so that demand paging occurs after initial

preloading of the previous working set for the djob.

2) Our second main conclusion addresses the 1issue of basic
efficiency. It wpertains more definitely to the INTERLISP system
itself, and 1less to TENEX, and has its major impact on
compute~-bound processes. Briefly, we found that roughly 8d4% of the
instruction fétchés occur within 38 pages of shared virtual address
space, chiefly the MACRO (or hand-coded) module. 1In other words,
the system svends a majority of its time executing instructions
within a relatively small and functionally well-defined area of the

INTERLISP address space. It follows that tightening and

streamlining code in those sections should bring about the largest H

payoffs in terms of system operating efficiency. Our measurements
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MEASUREMENTS

In order to characterize the computational patterns of INTERLISP
running under TENEX, two distinct types of measurements were made. One
set of measurements involved the pattern of usage of TENEX resources by
several INTERLISP users over an extended period of time. The second set
of measurements involved detailed examination of the underlying activity
of the INTERLISP system itself as it was performing a number of typical

tasks.

Usage patterns and modes of interaction

A very suitable strateqy for the arelioration of INTERLISP
performance 1is to concentrate on those patterns of usage that involve a
large and perhaps uvnnecessary amount of computational power, memory,
and/or the wuser’s own time. In order to do this, we needed to
characterize the actual use of INTERLISP by normal users going about

their daily business.

The first set of measurements used the built-in TENEX ijob parameter
statistics (CPU time charged, elapsed time, paae faults, time charaed
within page-fault routines) to monitor the activity patterns of several

typical users over an extended period of time.

The data given is for a moderatelyv lonag run (about 289 events) of

editing, compiling and associated debuaging operations, typical of much

of the activity of the LISP communitv. An event is defined as a single
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operation the user requires INTERLISP to do {like a PP or DW command in
the editor, or a compilation) which results in & certain amount of CPU
time beina consumed. The total CPU time reouired for the run is about 2

minutes.

We plot three guantities. First we split the events up into groups
defined by a range of required CPU time for the event (thus one group
might be events which took between 240 and 258 milliseconds of CPU time
to complete). For each qroup we then plot the proportion of the total
CPU time used by the job which is attributable to events in that group.
The arapmh indicates the chosen CPU time ranges for events. The upper
value of the range is agiven in the left hand column, and the lower value
is the ©previous urver wvalue (all values given in milliseconds). The
number of events reguirinoc CPU times withn the range are aiven in the
second column, and the percentage of the total CPU usage attributable to
those events is given in the third column. The percentage 1is also
plotted as a bar ararh immediatelv to the richt, with scale given below.
Note that, if we define interactive events as those that reauire CPU
times of 1less than 307 milliseconds, only 21% of the total CPU is used
in interactive operations. This is actually somewhat higher than we
have seen 1in the uncontrolled data taken from several typical users -
this run involves a lot of editina. Thus, the lion’'s share of the CPU

load placed on the system is in long, CPU-bound activities.

The second araph shows the number of events reaquiring CPU times
within each of the chosen ranaes., It shows quite arapbically that 2/3

(67%) of the total number of events represents "interactive" work.
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Thus, any deqgradation of performance resulting in the increase of

elapsed time for events (particularly interactive events) will be very

strongly felt by the wuser - with tremendous frustration judaina by

typical reactions.

Both of these plots are given in terms of net CPU time ~ this means
that for each interaction we have subtracted the time that TENEX
indicates was spent in the paae-faulting routines, since that time

varies strongly with load. This aives an indication of the "basic time"

spent in the various interactions. An indication of the additional CPU
time billed because of paage-faulting is given in the third graph which
gives percentage of interactions by gross CPU time - this 1includes all
TENEX billed time, including page faulting. For this example run at
relatively Jow load, there were 2642 faults, representing approximately
11909 milliseconds of time recorded as spent 1in the page faultinag
routines. The overall aross CPU time 1is 74,800 milliseconds. Thus,

about 15% of the billed time is due to page faulting.

The same three graphs are aiven for an almost 1identical run at
moderate load. While the first two graphs are rouahly similar (with the
exception of a "spike" at the .5-1.0 second reange due to & number of
error recovery (DWIM type) operations caused by execesive mistyping),
the third graph shows that there is a notable increase in CPU time
billed because of the increase in page-faulting. The total aross CPU
time is 132257 milliseconds, with 16053 page faults, accounting for
aoproximately 34,000 milliseconds or over 26% of the billed CPU time.

It is interesting to note that there is a difference of about 34 seconds
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of net cpu time between these twou runs as ubtained by subtracting the
TENEX repurted page fault time from the gross CPU time. Since the
reported billed time per page fault was over 4 milliseconds during luw
lvoad, and abuut 2 millisecunds during high louad, it 1is pussible that
more time was spent in the page fault routines during the high load
situatiun than was recorded by TENEX. Of course, the slight change in
the run accouunts for sume part of the difference, but prubably not moure
than half. The page faulting behaviur is examined in more detail 1in a

later sectiun.

[T,
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Editing, cumpiling dwimifying and clispifying - light lvuad

AVERAGE LOAD IS: 1.265496
Tutal net CPU time: 63,550 millisecounds
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Total gruss CPU time: 74,800 millisecounds
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Editing, cumpiling, dwimifying and clispifying = myderately heavy load

AVERAGE LOAD IS: 6.637456
Tutal net CPU time: 98,250 millisecounds
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Total gruss CPU time: 132,250 millisecunds
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Change in Interfault interval between luw and muderate luads

As described above, one of our oubservations 1is that the major
non-linear effect of machine load ouccurs as a result of vastly increased
page faulting, particularly for short, supposedly "interactive" jobs.
We plot the average time (net CPU - not counting time TENEX indicates to
be "page fault time") between page faults fur different net CPU 1length

interactions. This data is plotted four the two runs of the typical

editing, compiling, etc. joub described abouve, at twou different load

averages. Note that we ounly have control over lovad average, we do not

have any direct measurement of actual memory countention. The 1low 1load
average run is at a value slightly higher than the "dead of night load",
but roughly comparable. The high lvad average run 1is wounly normal
moderate afternoon lvading - that is already bad encugh in terms of page

faulting, su that really horrible load averages such as the 10-20 range

are not shown (and heaven fourbid the 20-30 luad range).
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Moderate luvad average -~ about 6.6

16053 total page faults
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The measurements just described provide a picture of what "TENEX
believes"” are the characteristics of LISP execution in a time-shared
environment. We use the expression "TENEX believes™ because, as in any
time-sharing enviruvnment, the usage parameters shown for a given job
depend heavily oun the system luad uver the couurse of the job. In part
this is due tou the necessarily appruximate allocatiun of system overhead
among the active jobs, which appears as an additiun to the computational
resources the jobs would consume if they were running alune. More
impourtant, however, is the fact that bouth the actual amount of overhead
and the allocatiun of this vuverhead tou different jubs varies
substantially with different joub mixes, A jub with given menury
requirements fur example, will page-fault much mure often when it is
competing fur core space with other memory-hungry joubs {ur many
small-memory Jjobs) than when it is running in less memoury-competitive
environments, Handling these page faults results in additiunal ouverhead

(CPU time) charged tu the ijub.

Excessive page-faulting causes a dramatic lengthening of ‘the
elapsed time for a Jjob nut wunly because disk latency inc.eases the
effective cycle time fur memoury references but because, more impurtantly
perhaps, such behaviur can interact with the scheduler, resulting in a
jub with basically interactive CPU requirements (a small fractiun of a
secund ouf CPU time needed between interactiouns with the user) being
drupped from the high-priuvrity interactive queue and placed oun the
less-frequently serviced cumpute-bound queues. I/0 cuntention causes
similar problems in 1increasing overhead and wait times for jobs

cumpeting fur use of shared devices such as the disk. Thus, fur nu
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fault that is intrinsically their own, certain jubs may be penalized
because their overhead-burdened CPU consumptiun makes the scheduler
decide that they belong in a lower-priority queue. In situations of
high memory contention this effect can pyramid, because during the wait
on the low priority queue the job may have most of 1its in-core pages
removed from core, and thus have to fault many more times than it would

have had to if it were allowed to finish its short CPU interaction.

In short, the usage parameters vary because the memory load and CPU
demand oun the system change with different mixes of jobs, and these load
facturs strongly affect the interaction of a wuser program (e.g.

INTERLISP) and the TENEX memoury manager, i/o drivers and scheduler.
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Memury and CPU usage vf INTERLISP as a separate systenm

The TENEX statistics correlated well with what the "monitored"
users experienced (and thus what the "typical user" would be likely to
experience) in ovperating INTERLISP under TENEX. While these statistics
suggested several changes to the TENEX system, they were insufficient to
pruvide a guide to the modifications to INTERLISP which would moust
improve the operation of the combined INTERLISP/TENEX system. This was
due bouth tu the covarseness of the measurements with regard tou the
voperativn of INTERLISP itself as an independent joub, as well as tu the
great difficulty of characterizing the details of the actual interactiun
between the twu systems (ur even characterizing the system louad
parameters which prevailed during the measurements). Thus 1t was
naecessary tu ubtain an entirely independent characterization of the

memory and CPU usage of INTERLISP in executing typical uperations.

This indep=rndent characterizatiun consisted of a series of related
measurements based woun a PDP-10 simulatour prugram running under TENEY,.
The simulator is a prougram which sits in a wuser's address space, and
essentially single-steps throueh a user prugram. The simulatur takes
vver frum the PDP-10 hardware the job of computing the effective
addresses four each of the wuser program's instructiovns, and provides
hooks tou alluw a measurement program to record the memury reference
pattern of the wuser Jjob in any degree of detail desired. It is
impurtant tou note that the simulatour sees a JSYS munitur call as une

instruction - NO ANALYSIS IS MADE OF TIME SPENT IN THE TENEX MONITOR

)

OING I/C AT THE USER'S REHEST. Thus, any prougram involving i/ will
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seem tu execute fewer in .tructions (as counted by the simulator) than
are actually executed when the prougram itself 1is run on the PDP-10.
There are many other subtleties invoulved in understanding precisely how
the simulatour wourks and how the data was analyzed. However, we feel
that these details are best discussed after we have presented the gist

uf the measurement results.

Page Faulting versus Allowed Working Set

INTERLISP has acquired a reputativn as a "cure hug" - a program
that requires huge amounts of cure in urder tu run. One of the moust
interesting things to do with the page reference data 1is tou determine
exactly houw much core INTERLISP needs tu run., Of cuurse this is a
puurly defined gquestion - what is interesting is the tradeuff between
the expected number of page faults (ur the expected time between page
faults) and the number of pages alluwed in the working set. It 1is
difficult tou determine the tradeoff mentioned abuve in the case of
TENEX, because the page management algorithms in TENEX are rather
cumplicated and are influenced by the existence of pages shared amung
several proucesses (which may cause TENEX tu luse track of the last time
a given proucess used a shared page). Thus, we have resurted tu using
the page usage data in counjunction with a simplified page management
mudel in crder tu give sume indicatiovn of the effect of working set size

vn page fault rate.




BBN Repurt No. 3331 Bult Berancek and Newman Inc.

We have prouduced graphs shuwing the number of page faults expected
for several measured prougrams for allowed working set sizes ranging from
about 40 to 200 pages, using an approximation tu a simple page
management algorithm. The assumed page management routine is a simple

LEAST RECENTLY USED (LRU) algorithm wourking with a fixed size working

set. Thus, when a prucess starts up it begins tou fault in pages, until
it has bruught in as many pages as there are alluwed in the particular
fixed size of the wurking set. The next time that a page nut in the
working set is referenced, the page in the working set least recently
referenced 1is remuved from the working set and replaced with the new
page. The same prucess gues un fur each page referenced which is not in
the current wourking set. It is pussible tu simulate the behaviour of
such a page management algorithm fur different fixed size working sets
and tu determine the number of page faults that would result fur a given

process for which we have page reference data.

We present below the graphs of page faults versus allowed fixed
working set size for three typical prougram executiuns, and include
tabular data fur uther measured prougrams in the appendix. A number of
inferences can be drawn from them, depending un variovus assumptions that
might be made about paging behaviur on TENEX and on the parameters of

interest.

The first example, referred tu as DWCL, invulves three typical user
vperations invouked under the LISP editur - "dwimifying" an expressiun,
"elispifying" an expressiun, and PRETTYPRINTing the expression. (In the

appendix we present the data fur a much longer run, called EDIT/CLEANUP,

23
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involving many editing ouperations of substitution, structure changing,
ete., wovbtained by repeating a protocul of an actual large scale
debugging session using the simulator.) The secound example, referred to
as REGCOM, invoulves the coumpilatiun of a set of functions which are
already in core (i.e. COMPILE as against TCOMPL, su nu file reading
operations are included). The third example is the ouperation of the
structure generator from the DENDRAL prougram, generating the possible
structures of the compound CUHE (it is referred tu as CONGENSIM - the

CONGEN simulatioun).

The graphs of page-faulting behaviur fur these examples are given
belouw, The first column (labelled "WORKING SET SIZE") gives the number
of pages allouwed tu accumulate in coure befoure the LRU algourithm is used
to replace vuld pages with new unes (causing rage faults). The secund
culumn (labelled "PAGE FAULTS") is the number of page replacements that
veecur for the currespounding working set size. These twu columns give a
complete tabular representation of the data. The data is graphed to the
right of the tabular representation, with the Y-axis being allowed
working set size (as given in the first column), and the X-axis being

the number of papge faults per 20000 memury references (this serves to

make the graphs uf different runs more cumparable), with the scale fur
the number ouf page faults being given beluw the graph. As is indicated,
there are appruximately 1.2 million memury references which touvk place
in the course of the dwimificatiun, clispification and PRETTYPRINTing.
Nute that the number of instructions executed in monitor mode (fur the
i/0 in PRETTYPRINTing) are not accounted fur, nur are any instructiouns

executed in TENEX fur page management, scheduling, etc.
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Example: DWCL

1204224 Memury refercences in example

Alluwed | Page : Page faults per 20000 memury references
Working | Faults :
Set |
2u8 | 240 *
240 | 240 *
232 | 241 *
224 2u45 *
216 | 248 *
208 | 253 : *
200 | 262 : ¥
192 | 286 : ¥
18y | 310 : *
176 | 318 : *
168 | 335 : *
160 | 347 : *
152 | 372 : *
14y 397 : *
136 | 16 : *
128 | 6q : *
120 | 574 : *
112 | 616 : *
104 | 700 : ¥
96 | 825 : %
88 | 985 : *
80 | 1243 : *
72 | 1551 : *
64 | 1916 : *
56 | 2535 : *
ug | 3867 : ®
40 | 8586 »
0 5 10 15 20 >>20
25
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Example: REGCOM

,; 2037760 Memory references in example

Allowed | Page : Page faults per 20000 memury references
Working | Faults :
Set '
)
]
240 236 *
232 | 237 *
224 | 238 *
216 | 242 *
208 | 249 *
200 | 277 *
192 | 289 *
184 | 292 *
176 | 303 *
168 | 308 *
160 | 320 : *
152 | 342 : *
14y 372 : *
136 | 428 : *
128 | 520 : *
120 | 797 : *
112 ' 395 : *
104 | 962 : *
96 | 1041 : *
88 | 1128 : *
80 | 1251 : *
72 | 1420 : *
64 | 1689 : *
56 | 2168 : *
ug | 3020 : *
Lo | 5236 : *
0 5 10 15 20 >>20
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Example: CONGENSIM

2283520 Memory references in example

Allowed | Page : Page faults per 20000 memory references
Working | Faults :
Set |
]
]
200 | 193 A 4
192 | 196 O
184 ! 197 : *
176 | 204 *
168 | 212 : *
160 | 219 : ¥
152 | 225 : *
14y H 235 *
136 | 255 : *
128 i 312 : *
120 | 400 : *
112 | 480 : *
104 | 570 : *
96 | 679 : *
88 | 817 : *
80 ! 1016 : *
72 | 1217 : *
64 | 1593 : *
56 | 2045 : *
ug | 2936 : *
4o 5401 : *
0 5 10 15 20 >>20

Interpretation of page faulting vesults

There are a number of subtleties that should be burne in mind in
lovking at the data. In the first place, the number of page faults is
given assuming that the iub starts frum scratch, with nu pages in cure.
Once the jub is rumnning, it is able tu keep its entire alluwed wurking

set with nov lusses, throuughout the entire run, simply bringing in new
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pages and swapping uvut LRU pages. If une wishes to make an estimate of
the frequency of page faults "in the steady state" for a coumpute bound
jub, one should probably assume that the jub has its full working set
in, and count faults after that. Thus, fur this purpose, one should
subtract the size of the allowed working set from the fault count four
the given working set, in order to determine how many faults occurred in
the steady state conditiun. Houwever, if one is considering the number
of faults likely to occur if the interaction starting the example occurs
several secunds after the last user interaction, then the number of page
faults as stated are meaningful under the standard TENEX page management
vperation - Dby the end of a few secunds uf waiting for the user tu
initiate an interaction, the user's prugram is probably nou lunger in
cure because of competition with other jubs demanding memory in order to

run.

The substantial flurry of page faults needed to start up an
interaction when the prougram is not in core might account fur the
difference in responsiveness felt between night-time and daytime running
vf  INTERLISP - at night there are times when the number of users is
small enough that the core allucation fur a user dues nout decay fur
guite a while - counceivably two or three LISPs could reside in cure and
not be swapped vut while waiting for user's responses. Thus, the
response tu a request (similar tou previous requests in terms of the
particular pages needed tu execute the request) can occur immediately,
with relatively little page faulting. During heavier memury cuntentioun
times, the same request may require uver a hundred page faults just to

initialize the working set. 1In turn, the charge four this faulting may
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take the jub off the interactive queue and thus cause a delay until the
job starts up on the lower queue - during which time the pages used by

the job can start to trickle out due to contention by other jobs.

Assuming that the jubs in question have a high enough priority to
run to completion without being removed from core, one can ask houw the
billed CPU time for the job varies as a function of the allowed working
set size. Assuming that TENEX charges an average of about 3
milliseconds of CPU time per page fault, a page faulting rate of one
fault per 3 millisecunds would double the charged time for the job. By
comparing the number of memory references repourted by the simulatcer to
the billed CPU time for a given job (subtracting off time TENEX
attributes tu paging) we find that each memury reference accounts for
about 1.5 micrusecunds uf CPU time (this includes memury reference time,
pager time, and the time tou execute instructiuns) on the average. Thus,
the billed time doubles when there is one page fault every 2000 memory
references., In the editing run this corresponds tuv a working set size
of appruximately 115 pages, for the compilation example tu about 100
pages, and fur the CONGENSIM example to about 76 pages. (These figures
are based un the total number of page faults given by the simulator as
plotted abuve. Four the "steady state", curresponding sizes are about

100, 70, and 68).

Anovther interesting guestion is houw the putential elapsed time for
a jub wvaries depending on the wurking set, If une assumes that the
minimum time it takes to fetch a page from disce Vis abuut oune disc

latency plus the TENEX billed CPU time per fault, une can say that the

29
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minimum elapsed time for a faulted reference is about 30 milliseconds,

corresponding to about 20000 regular memory references. Thus, a page

fault rate of one fault per 20000 references would cause a doubling of
potential elapsed time. Other estimates of effective elapsed time per
fault can be made, to take into account scheduling overhead and waits,
ete. These estimates range up to 100 millisecounds per fault. This
would correspond to 65000 references. There is also a question as tou
what constitutes an acceptable increase in elapsed time. On the pie

slice scheduler, if the user has a 10% slice, then a multiplication of

elapsed time by 10 (due to waits for faults or due to scheduling) is not
unreasonable. This courrespunds tu somewhere between 2000 and 6500
references per page fault, depending on estimates of elapsed time to

resolve a fault.
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Cumpusitivn of a Wurking Set

Given that oune intends tu reduce the working set of INTERLISP in
order to reduce page faulting, the question arises as tou what the
working set uf a typical prugram is made up of. Since the cuncept of
LISP 1s associated with the notiun of list-structure and the existernce
of large data bases uf list structure, une might expect that much of the
working space 1is tied up in list structure. Given this, one might try
tu reduce the wurking set by such techniques as 1linearization and
compactification of 1list structure. 1In fact, for the prougrams measured,
lists take unly a relatively small amount of the working space relative

tu other items.

Taking the pare reference data, we simulated an LRU algorithm for
four sizes of wurking set - 75 pages (a rather cramped set), 100 pages
(still small), 125 (reasonable), and 150 pages (a fairly generovus vune).
At intervals we determined which pages were in the working set and what
their data type was. We distinguished amung several different types of

data -

MACRO - hand coude part of system

COMPILED CODE - array space with instrurtion fetch references
ARRAYS - array space with no instruction fetches

STACKS - countrul and variable binding stacks

LISTS - CONS cell area

ATOMHT - hash table fur atoums

ATOMS - atoum header area

PNAME - print names of atoums

STRING - characters in strings

STRING POINTERS - puinters to bouunds of individual strings
FIXED NUMBERS - fixed pulnt numbers

OTHER - stack puinters, etc.
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The results for single prugrams seemed fairly stable in time, and
reasonably counsistent from une prugram to another. We have plotted the
composition of the working set for several programs, and include
complete tabular data here. The data given averages the composition of
the working set over the course of each program's execution, the
time-varying data are available, but do not seem tou be uf any greater

interest than the averaged data.
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COMPILEMEASURE
MACRO ARRAY LISTS ATOMS FXNUM
CCODE STACK ATOMHT FPNUM STRPT
20 22 3 3 11 0 11 0 2 0
21 35 L 3 16 0 13 0 2 0
23 U6 5 y 21 0 14 0 2 2
22 58 6 3 29 2 15 0 2 2

1111111111111 222222222222222213333331 44444476195
11111111112222222222222222222{3333333 144444716198
1111111112222222222222222222213333333 1444471617953
11111112222222222222222222221333333333 444456798

] ' 1 ' | 1 ) I I
' ] ] I i t I i I
1 2 3 Y 5 6 7 8 9
0 0 0 0 0 0 0 0 0

Legend - numbers signify data types:

MACRO cude

COMPILED cude and ARRAY
LISTS

ATOMS

ATOMHT

PNAMES

STRINGS

STRPTRS

FIXNUMS

STACK

NOoOCNOJ W —
L T T I O O T T B [ B |

DO -

Bult Beranek and Newman Inc.

PNAME

N &

OTHER
TR PAGES
0 1 75
0 2 100
2 1 125
2 2 150
75 pages
100 pages
125 pages
150 pages

percentage
of working
set
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CONGENSIM
MACRO ARRAY LISTS ATOMS FXNUM PNAME OTHER
CCODE STACK ATOMHT FPNUM STRPT STR PAGES

14 31 1 y 7 0 14 0 1 0 1 0 2 75

16 45 1 5 11 1 18 0 1 0 1 0 2 100

16 58 3 5 15 1 21 0 2 0 2 0 2 125

21 66 1 5 18 5 24 0 3 0 5 0 2 150

21 77 y 5 21 9 25 0 4 0 7 0 2 175

111111111122222222222222222222 133331 4Us4ulyul69Ss
111111112222222222222222222222 13333 | 44U4LLL4L569S
111111122222222222222222222222 1333331 44Uuulul69s
111111122222222222222222222221333331444404404,5]69S

o =--

1 1 I i 1 1 1 !
1 | I l I | t [
1 2 3 5 6 7 8 9
0 0 0 0 0 0 0 0

OO a--

Legend - numbers signify data types:

MACRO cude
COMPILED coude and ARRAY
LISTS

ATOMS

ATOMHT
PNAMES
STRINGS
STRPTRS
FIXNUMS
STACK

1w un o n W

NOOJOUN W -

- N

75 pages

100 pages

125 pages

150 pages

percentage
of working
set
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» PARSEMEASURE i
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MACRO ARRAY LISTS ATOMS FXNUM PNAME OTHER i
I CCODE STACK ATOMHT FPNUM STRPT STR PAGES i
16 19 2 3 12 1 18 0 0 0 2 0 2 75
18 29 3 3 18 3 20 0 0 0 3 0 2 100
19 Yy) Y 3 24 5 22 0 0 0 5 0 3 125
20 50 it 3 29 9 ou 0 0 0 8 0 3 150
21 59 7 3 31 11 28 0 2 0 9 0 Y 175
1111111111]222222222222213333333 1 444440450444 156SS 75 pages
11111111,222222222222222133333333 1 444444444 75,6SS 100 pages
1111111122222222222222221333333333 1 44ULULLLI5161S 125 pages
f 111111222022222222222221333333333 1 U4ULLLLIS5166]S 150 pages
( i i ' i | i i j : :
| 1 2 3 h 5 6 7 8 9 1 percentage
[ 0 0 0 0 0 0 0 0 0 0 of working
g 0 set

Legend - numbers signify data types:

MACRO cude

COMPILED cude and ARRAY
LISTS

ATOMS

ATOMHT

PNAMES

STRINGS

STRPTRS

FIXNUMS

STACK
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TASK1NLS
MACRO ARRAY LISTS ATOMS FXNUM PNAME
CCODE STACK ATOMHT FPNUM STRPT

19 18 2 y 4 5 11 0 1 2 5

21 27 3 5 7 8 16 0 1 2 8

22 35 2 5 10 11 19 0 1 3 9

22 43 5 5 12 14 23 0 2 3 11

23 55 6 3 19 14 25 0 y il 14

1T111111111111222222222222 131 4444444 155]6667189SS

T111111111122222222222222 133 1 4444444 1555166617 189S

11111111122222222222222 13331 4UU4LLL}5555]6661789SS

1111111122222222222222 13331 4444444 {555566617189S

| ] I i | | ' |
I I ) ) ' I I I
2 3 4 5 6 7 8 9
0 0 0 0 0 0 0

[ N
=]
oD —=--

Legend - numbers signify data types:
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MACRO cude
COMPILED cude and ARRAY
LISTS
ATOMS
ATOMHT
PNAMES
STRINGS
STRPTRS
FIXNUMS
STACK

T
2
3
y
5
1

OTHER
R PAGES
2 75
2 100
4 125
5 150
4y 175
75 pages
100 pages
125 pages
150 pages
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On the average, ovver half of the wourking set 1is taken wup with
prougram. The MACRO cude seems tu be referenced quite uften,'as
indicated by the fact that all the MACRO cude needed by a program scems
tuo be in the wurking set for 100 pages, and no extra MACRO cude cumes in
at 150 pages. Thus, as youu go frum 100 tou 150 pages the "executioun
code" that is added is almost entirely cumpiled LISP. Note also that
atoms and their ancillary sturage are heavily referenced -~ adding
tugether ATOMHT, ATOMS and PNAMES une gets uver 20% of the wourking set.
The remaining 25% is divided wup amung the other 1items, with list

structure taking only 10-15% uf the space.

This data suggests that the three best places to 1louuvk to reduce
wurkine set size are MACRO cuvde, cumpiled cude and atums. Other data
repurted beluw indicate that while 20 pages of the MACRO coude are
referenced, fewer than 5000 wourds (10 pages) of the MACRO cude are
actually used in running the given examples (e.g. the MACRO coude wused
for error recovery, backtracing, etc, are nut being used, but they are
intertwined with the other coude). Thus, by reorganizing the MACRO cude
about 10 pages can be saved. It is poussible that guud recvrganizatiun
can do even better by taking into account the statistical vpatterns of
references within the MACRO coude tu gruup tugether instructiouns cummunly
used together. Because the cumpiled code is the largest single data
type, it is reasonable to spend time looking to improve the compiler to
produce moure compact code. A 10% reductioun in size of the cumpiled coude

cuuld reduce the working set by 3 to 5 pages. Finally, the large amount

of space used by atums and their ancillary data suggests that
compactification of atums might be useful. In the current system each
37
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atom requires fouur wurds of storage plus its PNAME - in order to allow
it to have a tup level value, a pruperty list and a function call. The

hash table entry is one word, and the atom header takes three words,

since it must hold a full-word function cell, the PNAME pouinter, the
property list pointer and the value pouinter, Other data we have
cullected suggest that this is quite wasteful, that few atoms have all
three features, and that many atoms are used entirely as "indicators"
and have only their PNAME and nou property list, value or function
definition. It 1is conceivable that this might be taken into account in

designing a new structure for atoums,
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Counts of references tv varivus page types

One way uf determining the general pattern of activity of INTERLISP
is tu find the actual number of references tu a certain type of page
during the run of a prugram. We collected this data and oubtained twu
surprising results - even for large cumpiled prugrams, over 80% of the
instructiuns executed were actually ounes in the hand-coded part of the
LISP kernel; although LISP 1is assovciated with the cuncept of
list-processing, fewer than 1.7% of all memory references (instructiun
fetech and data read or write) gu tu list structure space. We give the
figures four several example prugrams beluw. The numbers refer tu the
fraction of the tutal number of memory references made by the given
program tou the particular type of page. "R/W" signifies read/write
references tou the paege, "Instructiovn fetch" indicates references tou

memory tu oubtain instructiovns. The page types are indicated as folluws:

MACRO: instructioun purtion of hand cuded assembly language kernel
CCDAR: cumpiled cude and/ur arrays

ASC&V: cunstants and tempourary storage assovciated with MACRO
PSTAK: the variable binding PDL

CSTAK: the cuntrol PDL

LISTS: CONS cell pages

ATOMS: atum header pages

PNAME: pages containing the print name character strings fur atoums
NUMS: fixed and fluating point numbers

PAGEO: the accumulaturs (registers) and the UUO trap locatiun
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PARSEMEASURE | CONGENSIM | COMPILEMEASURE| EDIT/CLEANUP | SUBNET

Total Instruction fetch:

t ' ]

1 I ]
.563 i .565 i 570 ' .569 1 482

Total R/W: | : | !
437 ' 435 ! 430 ! L4317 ! 518

MACRO: Instruction fetch ! i i
.514 ! Lu52 , 438 i L4y ! 362

CCDAR: Instruction fetceh ! { i
L0440 : .095 i 121 ! 113 ' .108

MACRO: R/W ! : i |
017 ' .032 ! .025 ' .030 ' .108

CCDAR: R/W : : | i
.009 ! .024 ! .022 : .023 oL o

ASC&V: R/W : : | :
.058 ' .096 ' .07Y ' .09y ! .068

PSTAK: R/W | | | !
.110 : .067 : .097 | .066 ' .076

CSTAK: R/W | | ! :
.090 i L117 ) .095 | .106 ' .082

LISTS: R/W | | : |
.012 ! 013 ! 015 ! 010 ' 016

ATOMS: R/W | | | :
.022 : .003 ! .003 : .00k ! 003

ATOMHT: R/W : ! ! !
.000 | .000 | .000 | 001 ' .000

PNAME: R/W | | | i
.001 | .000 | .001 | .004 'L 001

NUMS: R/W | : i |
.000 ! .000 ! 001 | .000 ' .000

PAGEO: Instruction feteh ! ' '
.0009 | .018 ! .01 | 013 ! 012

PAGEO: R/W (registers, UUO wourd)

.118 ' .083 ' 097 | .092 : 123
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Detailed instructivn fetch measurements on MACRO cude - bottlenecks

The secund set of measurements was made tu determine exactly where
the CPU time used in perfurming typical INTERLISP tasks is spent. Given
that the vast majurity of the INTERLISP system counsists of compiled LISP
cude rather than hand-cuded assembly language (about 200k words of
compiled LISP cude and about 15k wourds of hand-written MACRO coude) woune
might expect that a substantial portion of the cumputation done by LISP
consists uf executing cumpiled code. This is reinfourced by the fact
that over half of the memury required in the working set fur a given
prugram 1is in the coumpiled coude. Huwever, as revealed by the
instruction fetch data above, appruximately 80% of the instructions
being executed were part of the hand-couded kernel of the INTERLISP
system the MACRO cude. Thus, we decided tu take a mure detailed luuk at

the distribution of instruction fetches in the hand-couded kernel.

The simulator was modified to recurd in detail the pattern of
instruction fetches that oJccurred within the macruv cude. All memury
references vutside the range ovccupied by the hand-cude and its temporary
data storage were lumped tougether., Within the hand-cude area fetch and
read/write counts were kept fur cuntiguous 8-wurd chunks of memury.
While it would have been somewhat more meaningful to record data in
terms uf functiunal cumpounients of the hand-cude (e.g. particular
sutroutines), the table that would have been required was tu large, and
the time uverhead prohibitive. The use of B-wurd chunks allowed us tou
lucalize references sufficiently tu determine the functiunal chunks by

after-measurement analysis.
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The resulting data prouduced a rather strong, and to sume people a
surprising result. If the 8 word chunks were ordered (for each program)
by the number of fetches made within that chunk, then fur all programs

measured the top 30 chunks accounted for over U8% of the total

instruction fetches made by the prugram. 1In fact, the average over 12
quite different types of prougrams was that over 60% of the instruction

fetches for a program were contained within the program's tup 30 chunks,

It was nout unly the case that each program had its own "toup 30"
chunks - the union of the sets of "top 30" chunks had only 54 distinct
chunks! Morevver, 45 chunks covered over 50% of the references made by
all of the programs. Thus, fewer than 350 words of hand-cude (pussibly

fewer than 300 wurds since many of the chunks contained obviously

low-probability code) accounted for the lioun's share of the executiun

time taken by INTERLISP.

On the basis ouf this data we were able to pinpouint a small number
of high-priority portions of the hand-cude tou optimize. As it turned

vut, there was extremely high agreement between the data and the

"educated guesses" of the knowledgeable members of the INTERLISP

community - the wurst uffenders had been predicted ahead of time by many

of the peuple familiar with the implementation, and there were almust nou
qualitative surprises - only the sheer councentration of the instruction

fetches was surprising.

While the exact cure lucatioun and time spent are useful to the

systems proupgrammers in determining what wourds of the MACRO cude should

be carefully tightened, this level of detail secems unnecessary fur this
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report. Thus, we will give primarily the highlights of the results.

The gury details will be made available to thuse whu request them.

The single largest bottleneck in the system turned out tu be the
prucedure for louvking up variable bindings oun the stack. This touuk up
between 10% and U45% of the total instructions executed, with an
"average" (weighted equally over all measured programs) of over 20%.
Programs which were bluck compiled tended to have the lower values of
time spent in variable lookup, but still substantial amounts. The next
greatest amount of time, averaging 9%, of the instruction fetches, lay
in the function calling sequence, follouwed by about 8% of instruction
fetches in the type checking routines. If the time spent in the UUO
word and UUO dispatcher are added to these times, the total time spent
in the function call and type checking bouttleneck is almost 20% of the
instruction fetches. The next big bottleneck 1s the binding of
variables on entry tu a function, and this takes about 5.6% of the
instruction fetches. Finally, tu no ones surprise, the CONS ruutine
takes about 5% of the instruction fetches, This is certainly high for
fewer than thirty wourds of cude, but it is not as bad as many peuple

thought, pgiven the cumplexity of the INTERLISP CONS algorithm.
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Distributiovn of instruction fetch references fur several prougrams

(Data from top 30 chunks, functionally distributed)

Function i PDL search | type checking | CONS

Call : Entry i :
PARSEMEASURE

.073 I .039 | 455 (1) .084 ‘ .024
COMPILEMEASURE | ; |

.050 ' . 130 I .232 : .126 i .074
DWIMIFY 1

) .057 : .092 ' . 107 | . 133 | .008 |.071(IUB

'.’*Q
~EST

.146 | L1117 i 107 i .104 ' .049 1.017(IUB
2%Q)
COMNASAGRAMMAR

. 140 ‘ .128 | 21k ' .050 i . 055
TASK1NLS

.100 ; .050 i 157 i .073 ! .061
av. .09y .093 .212 .082 .0ls5

Brief Program Descriptiuns:

PARSEMEASURE
June 1975 version of L. Bates' parser fur the BBN speech understanding
system, parsing a short sentence. Prougram not highly tuned.

COMPILE MEASURE

Compilation of 9 short and medium size functions from in-coure
definitiouns - compilation results stured in core and on a file. Program
coded by systems persunnel and carefully tuned.

DWIMIFY
Application of errur currection function DWIMIFY to medium-size function
containing CLISP expressions. Prugram carefully tuned and cuded by

system persounnel.

WEST

Early version of a CAI prugram to teach arithmetic. Cuded by
non-systems personnel using a highly-mudular, functiovnally decumpused
style.

COMNASAGRAMMAR
Compiled versiun of ATN parser from the LUNAR natural language system,
Code produced by grammar-compiler.

TASKINLS
LISP simulation of NLS system under cuntrol of a CAI lessun munitor and
evaluator. Bluck-cumpiled system, mouderately tuned.
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We present beluw soume fine details regarding the simulatur and the
way that page faulting data was analyzed. We hope that this infourmation
might be useful to anybody wishing tu further analyze or interpret the

data given in this report.

Since the simulatour increases the CPU time needed tu perform an
vperation by a factor of from 40 to 80, it is tempting tu extract as
much data as pussible during a run of the simulatour. This data can then
be processed by any number of analysis prugrams tu pruvide various
characterizations of the operation of the prougram in executing the given
jub. However, there 1is a time/space tradeoff that arises that limits
the amount of raw data that can be cullected. Cunceivably, woune could
write ovut un a file the entire sequence of instructiovns executed and the
memory references nade during the executivn of a given user program.
While this would give a cumplete recurd of the cumputational activity of
the prugram, it is unfeasible four any but very short jobs - un a machine
which nourmally executes 300,000 tov 500,000 instructions per secound, a
few secunds uf CPU time of the user jub wouuld produce enovugh data to
fill an entire maenetic tape! Additiunally, the i/0v time needed tov write

ovut the vulume of page reference data would be prouhibitive.

Thus, the alternative tack was taken - certain measures of the
memury referencing activity were abstracted during the simulativn and
then written ovut to be later analyzed. In all cases, parameters were
accumulated fur a quantum of 2048 memory references, and then the

abstracted data were written vut. Two distinct measures were made. The
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first measure was made in ourder tu determine the page referencing
activity of INTERLISP - this 1is the raw data used to determine
properties of the INTERLISP "working set". To obtain this measure, the
page number was obtained for every reference to memory (including thouse
vccurring during indirect reference chains). Two tables were kept, one
containing the number of "instruction fetch" references to each page,
and the other containing the number of read/write references. The
reference counts were accumulated during a quantum (2048 total
references) and then a record was written out indicating all pages which
had been referenced during the quantum, and the number of read/write and
fetch references actually made. In addition, the INTERLISP type table
was saved four the given jub, giving a record of the "type" of the page
{(i.e. whether it contained MACRO code, stack, lists, atoum headers,
compiled cude and arrays, <ete.) All measurements were made under
conditions in which nou vearbage collections (which can cause page
shuffling) would vccur, so that the single type table was sufficient to

record the characteristics of each page.

; An added degree of subtlety had to be taken into account in
E recording page references, because of the "coude swapping" or "coumpiled
cude vuverlay" facility of INTERLISP. INTERLISP maintains one (and
putentially several) "lower furks" in which it stores compiled cude. A
segment of the basic 512k address space (generally 64 pages of 512 wurds
each) 1is reserved as a "swapping buffer". By use of PMAP's this buffer
is used tou winduw sectiuns of the lower fork(s) tu run couvde, and
therefore a reference tu a "real" page in the swapping buffer is in

actuality a reference tu sume "virtual" page in the luwer fork. Thus,
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the potential address space of an INTERLISP prougram is not limited to
the 512 pages directly addressable under TENEX - it can be indefinitely
large, though in practice it is currently limited tu G60 pages (1024 four
two forks, minus 64 pages in the swapping buffer). It was decided to
recurd the "virtual page" touched by each memory reference, su that we
could tell which cumpiled cude was being used, rather than simply what
pages in the swapping buffer were being used to window cumpiled code.
An added cumplicatiun is that the assignment of pages in the louwer fourk
to pages in the swapping buffer is dynamically variable, and su the
simulatour must make use of the INTERLISP swapper's tables to counvert
cach reference tou the swapping buffer to the current page reference in

the lower fourk.

In the sectiun un Page Faulting vs. Working Set Size we indicated
our use uf a simplified page manarement algorithm (LRU) tou replace the
page management procedures actually used by TENEX. Tou make it poussible
to ubtain page faulting behavior fur different working set sizes with
just a sinpgle pass uvver the data frum the simulatur, we make use of a
related councept, the "distance string", rather than directly simulating

the LRU alegurithm.

Given a sequence uf page references, the correspounding distance
string 1is a sequence of numbers which gives, fur each reference, the
number ouf distinct pages which have been referenced since the last time
the given page was referenced. Thus, given an LRU algorithm, for a
fixed wurking set size all page refercences which have a distance string

value ereater than the working set size will cause faults, and all
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references with luwer distances will not fault. This permits one to
make a single run through the distance string file and cumpute the

number of faults for any number of different working set sizes.

Must ouf ovur data comes in quantized sets of 2048 memury references,
and thus we wounly know the time of reference of a page tov within 2048
memory cycles. Because of this we must use an approximation to the
distance string algorithm. The resulting analysis of our data is not
exactly equivalent tu the results of the simple LRU algourithm described
abouve. For e<each page, we coumpute the number of distinct pages which
have been referenced since the last quantum in which the given page was
referenced. We 1include 1in that count all pages referenced in the

quantum when the given page was previously referenced which have not

been referenced in the intervening gquanta.
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We have coumpared the 2048 memory reference quantum data with data
taken with a quantum of 128 memury references (in which the average
number of page references is slightly less than 10 per quantum). The
graphs of a few of these runs are given beluw fur cumparison. The
calculation of number of page faults for a given working set size 1is
substantially the same (within a 2% range) four both quantum sizes, until
the working set droups below 56 pages. This is an indicatiun that ‘the
distance string values greater than 56 pages are quite accurate fur the
large quantum data, and since we are nut extremely interested in the
behaviur of INTERLISP beluw abuut 75 pages (at which point it is already
page-faulting almust every millisecund - a ridiculously high rate), the
large aquantum data is sufficient tou characterize the paging perfurmance

of INTERLISP.

Some uf the reasouns why the large gquantum approuximation 1s 1likely
tu be fairly accurate fur distance string values abuve 50 are:

a) On the average there are about 25 pages referenced in each

quantum, and data indicates that 10 tou 15 of thuse are referenced

in almost every quantum. Thus, fur distance string values greater

than 50 - twu quanta of references at least - the number of pages

in the "previous reference quantum" which are not referenced in the

intervening quanta is almoust certain to be less than 10.

b) The data indicate that ouver 90% of the distance string values
are beluw 60, su that for a page with distance string value over
60, charnces are that the contribution from its "previous reference

quantum” is less than 10% of the number of page references
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originally in that quantum, since the ovther 90% of thuse pages also
occur in at least ovne of the intermediate quanta. Thus, the
variation due to counting all of the remaining pages in the

previovus reference quantum is on the order of 10% of the number of

pages in the quantum.
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Data from run of the dwimification, ste. example using a 128 wmemory

reference quantum

Example: DWCL128

1204224 Memory references in example

Allowed | Page : Page faults per 20000 memory references
Working | Faults :
Set 1
}
[}
248 ' 240 *
240 240 *
232 | 241 *
224 | 245 *
216 | 248 *
208 | 253 : *
200 | 260 : *
192 | 284 : *
184 ) 314 : ¥
176 | 322 : *
168 | 334 : *
160 | 354 : *
152 | 375 : *
144 402 : *
136 | 420 : ¥
128 | 471 : *
120 | 569 : *
112 619 : ¥
104 712 : *
S5 | 829 : *
88 | 980 : *
80 i 1241 : *
72 | 1541 : *
64 | 1916 : *
56 | 2486 : *
yg | 3439 : *
4o | 5269 *

---------------------------------------------------
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Data from run of compilation using 128 memory reference quantum

Example: SMALL128COM

2037760 Memory references in example

Allowed | Page : Page faults per 20000 memory references
Working | Faults :
Set !
[}
[}
240 | 236 *
232 238 *
224 ' 241 *
216 | 24y *
208 | 251 *
200 | 279 *
192 g 290 *
184 | 293 *
176 | 302 * j
168 ' 309 * i
160 ! 322 * :
152 | 344 : *
144 ! 368 : *
136 | 422 : *
128 ; 521 : *
120 i 786 : ¥
112 | 898 : *
104 | 963 : *
96 | 1035 : *
88 i 1132 : ¥
80 | 1256 : *
72 | 1425 : *
6L | 1675 * J
56 | 2137 : *
48 | 2707 : ®
4o | 4139 : *
0 5 10 15 20 >>20

52 |
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Other page~faul

Example: COMPILEMEASURE

2928640 Memory references in example

Allowed | Page : Page faults per 20000 memury references
Working | Faults
Set i
- [}
240 | 233 *
232 234 *
224 | 236 *
i 216 | 240 *
208 | 248 *
200 | 285 *
- 192 | 296 *
184 | 300 *
176 ) 310 *
168 | 321 : *
160 | 335 : *
152 | 355 : *
14y 388 : *
136 | 47y : *
128 | 659 : *
120 | 9us : *
112 | 1067 : *
104 | 1156 : *
96 1232 : *
88 | 1342 : *
80 | 1514 : *
72 | 1731 : *
64 | 2045 : *
56 | 2544 : *
48 3706 : *
ho | 68u7 : %
0 5 10 15 20 >>20
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Example: EDIT/CLEANUP

8392704 Memory references in example

Allowed | Page : Page faults per 20000 memory references
Working | Faults :
Set !
]
t
320 317 *
312 317 *
304 ) 319 *
296 | 339 *
288 | 346 *
280 | 354 *
272 ) 366 *
264 | 377 *
256 | 396 *
248 | 15 *
240 ) 460 *
232 | 485 *
224 | 523 *
216 | 561 *
208 | 602 *
200 | 657 *
192 723 HE
184 | 796 : *
176 ) 875 : *
168 | 956 : *
160 | 1067 : *
152 | 1225 : *
14 | 1391 : *
136 | 1547 : *
128 | 1807 : *
120 | 2112 : *
112 ) 2440 : *
104 | 2914 : *
96 | 3562 : *
88 | 4348 : *
80 | 5530 : *
72 | 7386 : *
64 | 10041 : *
56 | 14020 : *
ug | 22092 : *
40 | 53392 : *
0 5 10 15 20 >>20
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Example: NLSPARSE
473088 Memory references in example
Allowed | Page Page faults per 20000 memory references
Working | Faults
Set |
i 205
208 | 211 *
200 21 *
192 | 211 *
184 | 215 *
176 | 216 *
168 | 219 *
160 | 221 *
152 226 *
14y ) 231 *
136 | 233 *
128 | 258 *
120 | 273 *
112 | 291 *
104 | 305 *
96 | 322 *
88 | 342 *
80 | 378 *
72 | 458 *
64 | 603 b
56 | 785 ¥
4g | 1200 ¥
ho | 2833 *
0 5 10 15 20 >>20
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Example: PARSEMEASURE

4333568 Memury references in example
Allowed | Page
Working | Faults/
Set iy 20000 memory references
]
[}
288 | 287 *
280 | 289 *
272 | 289 * f
264 | 289 *
256 | 289 *
248 | 289 *
240 ' 291 *
232 | 295 *
224 i 301 *
216 i 312 *
208 | 317 *
200 | 327 *
192 | 342 *
184 | 365 :
176 | 406 : * ‘
168 | 453 : * .
160 | Yol S} : * |
152 | 545 : * ‘
4y | 583 * !
136 | 625 : *
128 | 837 * |
120 1227 : * :
112 | 1390 : * i
104 | 1549 : * |
96 | 1892 : * ;
88 | 2173 ¢ * i
80 | 2577 : * ;
72 3329 : * f
. 64 | 5236 : »
i 56 1 7732 . ;
g 48 ) 12129 * :
l 40 | 29041 : .
0 5 10 15 20 >>20

i
[

56 k
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